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 Using developmental Sensor System hardware, we tested and deployed prototypes 

that transmitted data from remote sites to the user’s computer through the Iridium 

satellite network. Once the existing software and hardware proved functional and 

reliable, we were to perform the software development to implement 2-way 

communication between the remote unit and the user’s computer via the 2-way 

satellite modem link. Upon successful completion of this task, continue to develop 

additional functionality such as State-of-Health (SOH) monitoring. SOH monitoring in 

this case consisting of detecting the on-board battery voltage and the processor 

temperature every 24 hours, checking their values and sending a message to the host 

indicating whether the system has an acceptable SOH. Upon request, SOH values for 

battery voltage and processor temperature would be polled and sent to the host.  



2 
 

 

Small burst data (SBD) satellite communications  
 

Alexandra Saari, Mike Proicou, Janette Frigo, Kevin McCabe, Marvin Gard, Sanna Sevanto, 
Adam Warniment, Louis Borges 

 

 Critical hardware and scientific systems located in remote regions always require 
discussion of how best the operator can control and monitor the equipment. Generally, either 
someone must be on site, or the research team must utilize some remote monitoring scheme 
utilizing radio, cellular or satellite telemetry. Due to large-scale industrial and military interests 
such as oil and mining operations, or war, that often take place outside of established or intact 
infrastructure, there has been significant development of commercial systems that can 
accommodate these customers. However, these systems are often priced with a wealthy client 
base using tightly controlled acquisition methods in mind. In other words, the systems are 
expensive because the entities buying them have lots of money, and there is little competition.  
For concerns with smaller budgets that could use these systems, like science or small business, 
the cost of entry is prohibitive. This project seeks to address these smaller scale users by creating 
a low cost alternative that is versatile and configurable by the user for unconventional or 
innovative purposes.  

This is an ongoing project, led by Janette Frigo. My tasks, as discussed through this 
document, were to work with Mike Proicou, the lead software developer, to test the existing 
hardware and software for functionality and implement two way communications between the 
hardware and the Iridium network.  

HARDWARE INFORMATION 
The Iridium satellite constellation is a global array of 66 Low Earth Orbit (LEO) satellites 

that provide voice and data communication to any point on earth, provided the ground antenna 
has an unobstructed view of the sky, and the US does not have a trade embargo in the callers 
region. The system became operational in 1998 and boasted that “Iridium’s satellites are the only 
ones in the cosmos that communicate with one another as well as bounce signals back to Earth.”1 
As a consequence, an Iridium handset anywhere in the world can communicate with another 
Iridium handset anywhere in the world. 

The board is an embedded system using a Los Alamos (LANL) designed circuit board 
equipped with a variety of interfaces including RS232 Serial and USB, onboard memory, and an 
SD card slot. Due to the remote nature of the deployed system, power consumption must be 
minimized while retaining a high level of functionality. To address this, the board is 
administered through a Real Time Operating System (RTOS) running on a ST Microelectronics 
ARM M3 cortex processor (STM32F407ZGT6)2 that draws as little as 238 µA. The processor is 
                                                           
1 (Mellow, 2004) 
2 (STMicroelectronics, 2014) 
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programmed in the C language using Keil’s uVision 4 IDE3 and Keil’s uLink-ME programmer. 
Planned features include radio and direct sensor inputs. The RTOS is the RTX system from 
Keil4. Satellite communications were accomplished through an Iridium Short Burst Data (SBD) 
modem from Sutron.  

The SBD modem communicates with the satellite network and the mobile hardware. It 
sends to, and receives data from the network directly in the form of SBD packets. The modem 
can receive up to 270 bytes and transmit up to 340 bytes to the network per communication. Data 
to or from the satellite network are received and processed by an Iridium “gateway” location, the 
data are then processed by a reseller that distributes the information to the user through some 
type of prearranged network interface (email attachment, SMS text message, website, etc…). To 
send data to their modem, the users must send their data to the reseller via a prearranged method, 
the reseller passes the data to Iridium, Iridium communicates with the satellite network, and the 
modem receives the users’ data. 

Iridium produces the modems that communicate with their network and distributes them 
to their resellers as sealed “black boxes” which are then incorporated into the reseller’s hardware 
or resold directly to the end user. The reseller often offers some combination of gateway access 
and hardware as a bundle to the end user, though some resellers will sell gateway access to any 
existing Iridium modem. 

TESTING: PART 1, “ENVIRONMENTAL DATA MONITORING BOARD” 

An earlier iteration of the project used an ARM 7 development board paired with a 
LANL designed board providing sensor, power and serial interfaces between the development 
board and modem. The RTX system administered the system using software developed by Mike 
Proicou and provided data transmission capability. This board, known as the Environmental Data 
Monitoring Board was designed to monitor the depth of a remotely located water tank, and 
transmit the results at a predetermined interval to the Iridium network. Initially, we needed to test 
this board and its software for functionality.  

There were no locations in the immediate work areas to position the Iridium antenna for 
reliable reception. So to start, I connected to the board’s serial port with a laptop to monitor the 
board’s messages to the modem. The “sensors” in this system consisted of conductors mounted 
at different heights in a water tank and attached to the sensor inputs on the board. The water tank 
would be grounded to the board. When the sensors were polled, the sensor leads would be 
floated to a 12 volt “high” state. If a lead were submerged, the water would ground the sensor 
lead to a “low” state and it would be recorded by the microprocessor. The number of sensors that 
registered “low” during polling would indicate the level of water in the tank. At Mike’s 
suggestion, I set up a cup of water with wire leads at different heights and connected to the 
sensor inputs. Initial testing showed that the code attempted to poll the sensors and initiated a 
modem transfer of the data as expected. Numerous attempts to trigger the water level sensor 
inputs produced no response in the modem’s transmitted data summary. Careful examination of 
the code indicated no obvious data processing issues. However, after conferring with Adam 
Warniment, and examination of the hardware, it was discovered that an optocoupler had been 

                                                           
3 (Keil Software and Design, 2009) 
4 (Keil Tools by ARM) 



4 
 

installed incorrectly (reverse orientation), and was preventing the proper powering of the sensor 
array. 

Louis Borges remounted the optocoupler as described in the original prototype design, 
but the part proved to have been irreparably damaged by its reverse orientation. After further 
discussion with Adam, for the purposes of testing the software and functioning hardware, the 
damaged optocoupler was bypassed. After retesting the system with these adjustments, the 
system transmitted data as expected, showing each sensor being activated. 

After replacing the optocoupler , the system was retested, but again did not indicate any 
sensor inputs. Examination of the circuit with an oscilloscope showed the optocoupler receiving 
a trigger impulse of approximately 50 microseconds with no response. After examination of the 
data sheet for the replaced optocoupler (model G3VM-61GR1), it was found that the component 
had a minimum turn-on time of 1.5 milliseconds. The control software was updated with a 5 
millisecond delay after triggering the sensors to allow the optocoupler time to respond, and the 
system began reporting sensor inputs correctly, although in what appeared to be a reverse 
configuration. The system appeared to function correctly with the water floated to 12 volts 
during polling, bringing the submerged sensors high instead of low.   

At the conclusion of lab testing, the system was given to Marvin Gard for a test 
installation on a small water tank located on a small ranch outside of Santa Fe. Upon installation, 
the system began broadcasting data sets as expected. However, the data was inconsistent with the 
actual observed water level. Kevin and I travelled to Santa Fe to inspect the system with Marvin 
and found the sensor assembly was accumulating excess moisture and the sensors appeared to be 
energizing each other through the water on the assembly. Kevin examined the schematic of the 
prototype board and found that the system, while functional in either configuration, should be 
connected with the water tank grounded instead of floated with 12 volts. Time of day and electric 
storms prevented further work on the system that evening, so I returned the following morning 
with Janette. After reversing the voltage configuration, the sensors indicated they were all 
submerged, despite the tank being almost empty. Taking the lesson from the earlier optocoupler 
into account, I thought the components between the power supply and sensor inputs may also 
need additional rise time. So may not be energized long enough to bring the sensors high. I 
changed the delay after polling from 5 ms to 10 ms and the system appeared to be working 
correctly. Excess moisture continues to be an issue, so Marvin is examining the sensor assembly 
for a future redesign.  

TESTING: PART 2, “LOGGER BOARD” 
The “Logger board” is an early version of the envisioned system containing only the 

ARM M3 Cortex processor, power management hardware, programming header, RS232 Serial 
port, and a simple 3 wire serial header for use with a Campbell Scientific CR1000 data logger5. 
Software for the logger is written in CRBasic. CRBasic can be written and error checked with 
Campbell Scientific’s IDE or just written in Notepad on Windows machines. The source code is 
uploaded to the logger through Campbell Scientific’s communication software (in this case, 
PC200W) and a standard serial cable. Mike also wrote the software for both the prototype board 
and logger.   

                                                           
5 (Campbell Scientific, 2013) 
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This version of the system had already been deployed to two field locations on 
environmental monitoring stations in Abisko Sweden, and in Alaska at (roughly) 66.508231 
latitude, and -157.497658 longitude. The Abisko station had been damaged by snow while 
servicing, and needed data transmission adjustments as the data was overflowing the message 
limit for SBD transmissions. The Alaska station stopped transmitting after it was completely 
destroyed by wildlife. 

A new logger board was prepared for Abisko and conformal coated for weatherization. 
Mike adjusted the Campbell code to send an “A” and “B” message to control message lengths. I 
tested the new board and code to ensure everything worked as expected. There was a small error 
in the code that kept the system from powering up properly, but after that was corrected 
everything seemed okay. We gave the board to Sanna Sevanto who delivered it to the station in 
Sweden.  

The station in Sweden had the same CR1000 data logger as we had for testing, but also 
had a pair of 16/32 channel multiplexers attached to the logger. Everything was written to expect 
64 channels of data output for transmission, but the CR1000 and multiplexers had also received 
water damage during servicing. The CR1000 was swapped for a new unit, and the code was 
rewritten on site to bypass polling of the damaged channels on the multiplexers, giving 53 
channels of output for transmission. Unfortunately, the system began reporting inconsistent 
temperature values upon activation. Mike suspected the problem was a result of not adjusting the 
size of the data array that stored the sensor outputs after reducing the number of channels. He 
suggested each set of data was being written to the array at an offset due to the initial buffers not 
being completely full. After examining the rewritten code and testing it both with fixes and 
without, I found the original code to be robust and tolerant of length errors. After numerous 
attempts at corrupting the incoming data, interfering with Iridium communication, and 
fluctuating power supply, I was unable to break it and the system continued to perform as 
designed. We contacted Sanna and asked her to check the wiring in the system and sensor 
attachments. Afterwards, the system began broadcasting again with appropriate data 
transmissions.  

IMPLEMENTING TWO-WAY COMMUNICATION 
Communication with Iridium SBD modems is accomplished through the internet as 

described previously. In the case of the Sutron modem, modems can be contacted by sending an 
email to data@sbd.iridium.com with the IMEI # of the modem as the subject line, and an 
attachment containing the data wishing to be sent. The attachment should be a text file saved 
with a “sbd” extension, for example “dataformodem.sbd”. This is the same procedure outlined in 
the Iridium documentation, so is not unique to the Sutron product. Iridium SBD modems use an 
extended set of standard modem AT commands for control. For example, the ring alert for a 
standard modem is simply, “+RING”, but for the SBD modem, this is changed to “+SBDRING”. 
These commands and their functions are described in detail in the modem vendor and Iridium 
product documentations. 

mailto:data@sbd.iridium.com
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The RTOS is a multithreaded system that uses a “round robin” technique to circulate 
through assigned tasks, allowing individual tasks to take different amount of time or resources 
without delaying (within a designed tolerance) the execution of the other running tasks. This 
system works well with the Interface Board as it needs to coordinate the communication between 
multiple pieces of controlled equipment and the attached communication devices so that all data 
and commands are delivered as expected. The technique applied in this case is visualized in 
figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The external device in this case is a Campbell Scientific CR1000 data logger and only 
provides output to the Interface Board. The board has a task that exclusively listens for data from 
the logger. This task sends any data it receives to the RTOS for processing and then requests an 
appropriate transmission from the Output Control Task (OCT). From the modem, another task, 
exclusively listens for modem responses and sends that data to the Output Control Task. The 
OCT collects responses from the modem and responds or, if necessary, sends the received data to 
be processed. The OCT’s main purpose is to collect any requests for transmission and ensure that 
they are sent to the modem one at a time. Each attached device should only have one task that 
responds to it for input or output. This prevents devices from mixing data streams and receiving 
or sending garbled data. 

Implementing this method so that it is responsive and robust enough to handle variable 
network conditions is not trivial and is an ongoing project beyond the time frame specified in this 
internship. What has been accomplished as of this writing  is the determination of the necessary 
AT codes for receiving modem terminated messages (MTM), and retrieving them from the 
modem data buffers. Further, the existing command parser written by Mike Proicou has been re-
factored to recognize and respond to these new commands. The development of the output task 
to control the requests from the various devices and tasks is ongoing, and still not functional to 

Figure 1 
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an acceptable level of reliability. The documentation available for developing a field application 
such as this is not published and is proprietary to Iridium Satellite LLC and the vendor (in this 
case, the Sutron company). Consequently, the command documentation has been proven to be 
not entirely accurate as to the expected responses from the modem.  

To handle the lack of documentation, experiments were designed to fill in knowledge 
gaps. Using a serial interface with the modem, we were able to observe the modem responses 
directly, as it was presented with data from the Iridium network and the terminal. Unfortunately, 
the available locations to perform these experiments did not have ideal signal strength from the 
network, which cost time. However, it did allow us to gain experience with poor network 
conditions, which should be helpful with the development of the Interface Board’s software.  

Future work will continue the development and testing of the board’s software 
implementing reliable two-way communication with the hardware. Later prototypes of the 
Interface Board will have additional I/O support including onboard radio communications. Once 
the basic two-way communication has been enabled, we will implement the onboard radio 
system’s mesh networking capability. Further features and functionality for the Interface Board 
will be added as requested. 
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